Assessor Resource

MARL020
Apply advanced principles of marine mechanics

Assessment tool

Version 1.0
Issue Date: April 2024


This unit involves the skills and knowledge required to apply advanced principles of marine mechanics and to perform associated calculations needed to operate and maintain marine machinery.

This unit applies to the work of a Marine Engineer Class 1 on commercial vessels of unlimited propulsion power and forms part of the requirements for the Certificate of Competency Marine Engineer Class 1 issued by the Australian Maritime Safety Authority (AMSA).

No licensing, legislative or certification requirements apply to this unit at the time of publication.

You may want to include more information here about the target group and the purpose of the assessments (eg formative, summative, recognition)



Evidence Required

List the assessment methods to be used and the context and resources required for assessment. Copy and paste the relevant sections from the evidence guide below and then re-write these in plain English.

Elements describe the essential outcomes.

Performance criteria describe the performance needed to demonstrate achievement of the element.

1

Apply principle of statics to determine forces in structures, connections, support systems, and trusses in two and three dimensions

1.1

Bows notation is applied to solve problems related to trusses

1.2

Individual loads are computed using method of sections

1.3

Forces in three-dimensional structures are calculated

2

Calculate friction torque in plate and cone clutches

2.1

Laws of friction are applied to develop formulae, using uniform wear, to find the torque in a plate and cone clutch

2.2

Laws of friction are applied to develop formulae, using uniform pressure, to find the torque in plate and cone clutches

2.3

Power to overcome friction in plate and cone clutches using uniform wear and uniform pressure formulae is computed

3

Calculate displacement, velocity and acceleration in cams, engine mechanisms and gear systems

3.1

Velocity and acceleration diagrams are applied to illustrate relative velocity and acceleration

3.2

Output of epicyclic gears is calculated by applying relative velocity and acceleration theory

3.3

Inertia loads are calculated using piston velocity and acceleration equations

4

Analyse forces and couples to balance reciprocating machinery

4.1

How primary force balance is obtained is graphically illustrated

4.2

Relationship between complete balance and dynamic balance is explained

4.3

Reciprocating piston acceleration formula is applied to differentiate between primary and secondary forces

4.4

Complete balance for a multicylinder reciprocating engine or machine is illustrated graphically using vector diagrams and computed analytically

5

Apply simple harmonic motion principles to solve problems in free and forced vibration

5.1

Differences in the terms amplitude, frequency and period are explained

5.2

Simple harmonic motion (SHM) equations are derived from the scotch yoke mechanism

5.3

Equations for displacement, velocity, acceleration and frequency in SHM are developed

5.4

Displacement, velocity, acceleration and frequency in SHM in a vibrating spring-mass system are determined

5.5

Spring constant (k) for springs in series and parallel is calculated

5.6

Forced vibration caused by an out-of-balance rotating mass is analysed to derive an expression for amplitude of forced vibration

5.7

Dangers of resonance are explained

6

Calculate hoop stresses in rotating rings and stresses in compound bars

6.1

How rotational stress is generated by centrifugal force is explained

6.2

Formula for hoop stress in a rotating ring is applied to calculate hoop stress and/or limiting speed of rotation

6.3

Stresses in compound bars subject to axial loads and/or temperature change are determined

7

Apply strain energy and resilience theory to determine stresses caused by impact or suddenly applied loads

7.1

Equation is derived to calculate strain energy in a deformed material

7.2

Stress in a material due to impact or dynamic loads is determined using energy equation

7.3

Equation to calculate stress caused by suddenly applied loads is derived

8

Calculate beam deflection

8.1

Macaulay’s method is applied to calculate beam deflection

8.2

Deflection of cantilever and simply supported beams is calculated using standard deflection formulae for different loads

9

Apply Euler's formula to find buckling load of a column

9.1

Effective length of a column with various end restraints is determined

9.2

Slenderness ratio is applied to determine the strength of columns

9.3

Relationship between slenderness ratio and buckling is explained

9.4

How buckling load for a slender column is applied (including a factor of safety) is explained

10

Calculate stresses

10.1

How to combine stress formula and calculate stress with combined loading is explained

10.2

Superposition is used to describe stress due to combined axial and bending stress

10.3

Mohr’s Circle is employed to illustrate normal and shear stress

10.4

Principal stress formulae are applied to explain how maximum combined normal and shear stress can be obtained

11

Apply thick shell formulae

11.1

Tangential stress distribution caused by internal and external pressure is analysed

11.2

Lame’s theorem is applied to describe stress in thick cylinders due to internal and external pressure

12

Apply continuity equation to determine changes in fluid velocity

12.1

Conservation of energy theory is applied to calculate pressure, head and velocity of fluids flowing through orifices

12.2

Volumetric and mass flow through a venturi meter is calculated

12.3

Forces exerted by flowing fluids either free (jet) or contained are determined, including coefficients of velocity, contraction of area and discharge

13

Determine changes in fluid flows through pipe systems and centrifugal pumps

13.1

Difference between steady and unsteady flow is clarified

13.2

Viscosity of fluids is analysed and difference between dynamic and kinematic viscosity is explained

13.3

Significance of Reynolds number in fluid mechanics is explained

13.4

Importance of critical Reynolds number is explained

13.5

Flow losses in pipes and fittings are calculated

13.6

Changes of velocity of liquids in a centrifugal pump are analysed and entry and exit vane angles are determined

Evidence required to demonstrate competence in this unit must be relevant to and satisfy all of the requirements of the elements, performance criteria and range of conditions on at least one occasion and include:

applying relevant work health and safety/occupational health and safety (WHS/OHS) requirements and work practices

assessing own work outcomes and maintaining knowledge of current codes, standards, regulations and industry practices

identifying and applying relevant mathematical formulas and techniques to solve advanced problems related to marine mechanics

identifying and interpreting numerical and graphical information, and performing complex mathematical calculations such as determining hoop stresses in rotating rings and stresses in compound bars

identifying, collating and processing information required to perform complex calculations related to marine mechanics

imparting knowledge and ideas through verbal, written and visual means

reading and interpreting written information needed to perform complex calculations in marine mechanics

solving problems using appropriate laws and principles

using calculators to perform accurate, reliable and complex mathematical calculations.

Evidence required to demonstrate competence in this unit must be relevant to and satisfy all of the requirements of the elements, performance criteria and range of conditions and include knowledge of:

advanced principles of marine mechanics

angular and linear motion

Bows notation

centre of gravity

conservation of energy theorem

factor of safety

force

inertia force

joint efficiency factor

laws of friction

laws of motion

momentum

nature and laws of friction

polygon of forces

pressure vessels

reactions

simple harmonic motion

stress and strain

thin cylinder theory

turning moment

vector diagrams

WHS/OHS requirements and work practices.

Assessors must satisfy National Vocational Education and Training Regulator (NVR)/Australian Quality Training Framework (AQTF) assessor requirements.

Assessment must satisfy the National Vocational Education and Training Regulator (NVR)/Australian Quality Training Framework (AQTF) standards.

Assessment processes and techniques must be appropriate to the language, literacy and numeracy requirements of the work being performed and the needs of the candidate.

Assessment must occur in workplace operational situations or where these are not available, in simulated workplace operational situations or an industry-approved marine operations site that replicates workplace conditions where advanced principles of marine mechanics can be applied

Resources for assessment include access to:

applicable documentation including workplace procedures, regulations, codes of practice and operation manuals

diagrams, specifications and other information required for performing advance calculations related to marine mechanics

relevant regulatory and equipment documentation that impacts on work activities

technical reference library with current publications on advanced marine mechanics

tools, equipment, materials and personal protective equipment currently used in industry.

Performance should be demonstrated consistently over time and in a suitable range of contexts.


Submission Requirements

List each assessment task's title, type (eg project, observation/demonstration, essay, assingnment, checklist) and due date here

Assessment task 1: [title]      Due date:

(add new lines for each of the assessment tasks)


Assessment Tasks

Copy and paste from the following data to produce each assessment task. Write these in plain English and spell out how, when and where the task is to be carried out, under what conditions, and what resources are needed. Include guidelines about how well the candidate has to perform a task for it to be judged satisfactory.

Elements describe the essential outcomes.

Performance criteria describe the performance needed to demonstrate achievement of the element.

1

Apply principle of statics to determine forces in structures, connections, support systems, and trusses in two and three dimensions

1.1

Bows notation is applied to solve problems related to trusses

1.2

Individual loads are computed using method of sections

1.3

Forces in three-dimensional structures are calculated

2

Calculate friction torque in plate and cone clutches

2.1

Laws of friction are applied to develop formulae, using uniform wear, to find the torque in a plate and cone clutch

2.2

Laws of friction are applied to develop formulae, using uniform pressure, to find the torque in plate and cone clutches

2.3

Power to overcome friction in plate and cone clutches using uniform wear and uniform pressure formulae is computed

3

Calculate displacement, velocity and acceleration in cams, engine mechanisms and gear systems

3.1

Velocity and acceleration diagrams are applied to illustrate relative velocity and acceleration

3.2

Output of epicyclic gears is calculated by applying relative velocity and acceleration theory

3.3

Inertia loads are calculated using piston velocity and acceleration equations

4

Analyse forces and couples to balance reciprocating machinery

4.1

How primary force balance is obtained is graphically illustrated

4.2

Relationship between complete balance and dynamic balance is explained

4.3

Reciprocating piston acceleration formula is applied to differentiate between primary and secondary forces

4.4

Complete balance for a multicylinder reciprocating engine or machine is illustrated graphically using vector diagrams and computed analytically

5

Apply simple harmonic motion principles to solve problems in free and forced vibration

5.1

Differences in the terms amplitude, frequency and period are explained

5.2

Simple harmonic motion (SHM) equations are derived from the scotch yoke mechanism

5.3

Equations for displacement, velocity, acceleration and frequency in SHM are developed

5.4

Displacement, velocity, acceleration and frequency in SHM in a vibrating spring-mass system are determined

5.5

Spring constant (k) for springs in series and parallel is calculated

5.6

Forced vibration caused by an out-of-balance rotating mass is analysed to derive an expression for amplitude of forced vibration

5.7

Dangers of resonance are explained

6

Calculate hoop stresses in rotating rings and stresses in compound bars

6.1

How rotational stress is generated by centrifugal force is explained

6.2

Formula for hoop stress in a rotating ring is applied to calculate hoop stress and/or limiting speed of rotation

6.3

Stresses in compound bars subject to axial loads and/or temperature change are determined

7

Apply strain energy and resilience theory to determine stresses caused by impact or suddenly applied loads

7.1

Equation is derived to calculate strain energy in a deformed material

7.2

Stress in a material due to impact or dynamic loads is determined using energy equation

7.3

Equation to calculate stress caused by suddenly applied loads is derived

8

Calculate beam deflection

8.1

Macaulay’s method is applied to calculate beam deflection

8.2

Deflection of cantilever and simply supported beams is calculated using standard deflection formulae for different loads

9

Apply Euler's formula to find buckling load of a column

9.1

Effective length of a column with various end restraints is determined

9.2

Slenderness ratio is applied to determine the strength of columns

9.3

Relationship between slenderness ratio and buckling is explained

9.4

How buckling load for a slender column is applied (including a factor of safety) is explained

10

Calculate stresses

10.1

How to combine stress formula and calculate stress with combined loading is explained

10.2

Superposition is used to describe stress due to combined axial and bending stress

10.3

Mohr’s Circle is employed to illustrate normal and shear stress

10.4

Principal stress formulae are applied to explain how maximum combined normal and shear stress can be obtained

11

Apply thick shell formulae

11.1

Tangential stress distribution caused by internal and external pressure is analysed

11.2

Lame’s theorem is applied to describe stress in thick cylinders due to internal and external pressure

12

Apply continuity equation to determine changes in fluid velocity

12.1

Conservation of energy theory is applied to calculate pressure, head and velocity of fluids flowing through orifices

12.2

Volumetric and mass flow through a venturi meter is calculated

12.3

Forces exerted by flowing fluids either free (jet) or contained are determined, including coefficients of velocity, contraction of area and discharge

13

Determine changes in fluid flows through pipe systems and centrifugal pumps

13.1

Difference between steady and unsteady flow is clarified

13.2

Viscosity of fluids is analysed and difference between dynamic and kinematic viscosity is explained

13.3

Significance of Reynolds number in fluid mechanics is explained

13.4

Importance of critical Reynolds number is explained

13.5

Flow losses in pipes and fittings are calculated

13.6

Changes of velocity of liquids in a centrifugal pump are analysed and entry and exit vane angles are determined

Range is restricted to essential operating conditions and any other variables essential to the work environment.

Dangers include one or more of the following:

catastrophic failure due to physical limitations of machines being exceeded as determined by their susceptibility and resistance to vibrations

violent swaying motions

Different loads include one or more of the following:

combined

concentrated

distributed

Evidence required to demonstrate competence in this unit must be relevant to and satisfy all of the requirements of the elements, performance criteria and range of conditions on at least one occasion and include:

applying relevant work health and safety/occupational health and safety (WHS/OHS) requirements and work practices

assessing own work outcomes and maintaining knowledge of current codes, standards, regulations and industry practices

identifying and applying relevant mathematical formulas and techniques to solve advanced problems related to marine mechanics

identifying and interpreting numerical and graphical information, and performing complex mathematical calculations such as determining hoop stresses in rotating rings and stresses in compound bars

identifying, collating and processing information required to perform complex calculations related to marine mechanics

imparting knowledge and ideas through verbal, written and visual means

reading and interpreting written information needed to perform complex calculations in marine mechanics

solving problems using appropriate laws and principles

using calculators to perform accurate, reliable and complex mathematical calculations.

Evidence required to demonstrate competence in this unit must be relevant to and satisfy all of the requirements of the elements, performance criteria and range of conditions and include knowledge of:

advanced principles of marine mechanics

angular and linear motion

Bows notation

centre of gravity

conservation of energy theorem

factor of safety

force

inertia force

joint efficiency factor

laws of friction

laws of motion

momentum

nature and laws of friction

polygon of forces

pressure vessels

reactions

simple harmonic motion

stress and strain

thin cylinder theory

turning moment

vector diagrams

WHS/OHS requirements and work practices.

Assessors must satisfy National Vocational Education and Training Regulator (NVR)/Australian Quality Training Framework (AQTF) assessor requirements.

Assessment must satisfy the National Vocational Education and Training Regulator (NVR)/Australian Quality Training Framework (AQTF) standards.

Assessment processes and techniques must be appropriate to the language, literacy and numeracy requirements of the work being performed and the needs of the candidate.

Assessment must occur in workplace operational situations or where these are not available, in simulated workplace operational situations or an industry-approved marine operations site that replicates workplace conditions where advanced principles of marine mechanics can be applied

Resources for assessment include access to:

applicable documentation including workplace procedures, regulations, codes of practice and operation manuals

diagrams, specifications and other information required for performing advance calculations related to marine mechanics

relevant regulatory and equipment documentation that impacts on work activities

technical reference library with current publications on advanced marine mechanics

tools, equipment, materials and personal protective equipment currently used in industry.

Performance should be demonstrated consistently over time and in a suitable range of contexts.

Copy and paste from the following performance criteria to create an observation checklist for each task. When you have finished writing your assessment tool every one of these must have been addressed, preferably several times in a variety of contexts. To ensure this occurs download the assessment matrix for the unit; enter each assessment task as a column header and place check marks against each performance criteria that task addresses.

Observation Checklist

Tasks to be observed according to workplace/college/TAFE policy and procedures, relevant legislation and Codes of Practice Yes No Comments/feedback
Bows notation is applied to solve problems related to trusses 
Individual loads are computed using method of sections 
Forces in three-dimensional structures are calculated 
Laws of friction are applied to develop formulae, using uniform wear, to find the torque in a plate and cone clutch 
Laws of friction are applied to develop formulae, using uniform pressure, to find the torque in plate and cone clutches 
Power to overcome friction in plate and cone clutches using uniform wear and uniform pressure formulae is computed 
Velocity and acceleration diagrams are applied to illustrate relative velocity and acceleration 
Output of epicyclic gears is calculated by applying relative velocity and acceleration theory 
Inertia loads are calculated using piston velocity and acceleration equations 
How primary force balance is obtained is graphically illustrated 
Relationship between complete balance and dynamic balance is explained 
Reciprocating piston acceleration formula is applied to differentiate between primary and secondary forces 
Complete balance for a multicylinder reciprocating engine or machine is illustrated graphically using vector diagrams and computed analytically 
Differences in the terms amplitude, frequency and period are explained 
Simple harmonic motion (SHM) equations are derived from the scotch yoke mechanism 
Equations for displacement, velocity, acceleration and frequency in SHM are developed 
Displacement, velocity, acceleration and frequency in SHM in a vibrating spring-mass system are determined 
Spring constant (k) for springs in series and parallel is calculated 
Forced vibration caused by an out-of-balance rotating mass is analysed to derive an expression for amplitude of forced vibration 
Dangers of resonance are explained 
How rotational stress is generated by centrifugal force is explained 
Formula for hoop stress in a rotating ring is applied to calculate hoop stress and/or limiting speed of rotation 
Stresses in compound bars subject to axial loads and/or temperature change are determined 
Equation is derived to calculate strain energy in a deformed material 
Stress in a material due to impact or dynamic loads is determined using energy equation 
Equation to calculate stress caused by suddenly applied loads is derived 
Macaulay’s method is applied to calculate beam deflection 
Deflection of cantilever and simply supported beams is calculated using standard deflection formulae for different loads 
Effective length of a column with various end restraints is determined 
Slenderness ratio is applied to determine the strength of columns 
Relationship between slenderness ratio and buckling is explained 
How buckling load for a slender column is applied (including a factor of safety) is explained 
How to combine stress formula and calculate stress with combined loading is explained 
Superposition is used to describe stress due to combined axial and bending stress 
Mohr’s Circle is employed to illustrate normal and shear stress 
Principal stress formulae are applied to explain how maximum combined normal and shear stress can be obtained 
Tangential stress distribution caused by internal and external pressure is analysed 
Lame’s theorem is applied to describe stress in thick cylinders due to internal and external pressure 
Conservation of energy theory is applied to calculate pressure, head and velocity of fluids flowing through orifices 
Volumetric and mass flow through a venturi meter is calculated 
Forces exerted by flowing fluids either free (jet) or contained are determined, including coefficients of velocity, contraction of area and discharge 
Difference between steady and unsteady flow is clarified 
Viscosity of fluids is analysed and difference between dynamic and kinematic viscosity is explained 
Significance of Reynolds number in fluid mechanics is explained 
Importance of critical Reynolds number is explained 
Flow losses in pipes and fittings are calculated 
 
 

Forms

Assessment Cover Sheet

MARL020 - Apply advanced principles of marine mechanics
Assessment task 1: [title]

Student name:

Student ID:

I declare that the assessment tasks submitted for this unit are my own work.

Student signature:

Result: Competent Not yet competent

Feedback to student

 

 

 

 

 

 

 

 

Assessor name:

Signature:

Date:


Assessment Record Sheet

MARL020 - Apply advanced principles of marine mechanics

Student name:

Student ID:

Assessment task 1: [title] Result: Competent Not yet competent

(add lines for each task)

Feedback to student:

 

 

 

 

 

 

 

 

Overall assessment result: Competent Not yet competent

Assessor name:

Signature:

Date:

Student signature:

Date: