NTISthis.com

Evidence Guide: MARL6008A - Apply advanced principles of naval architecture

Student: __________________________________________________

Signature: _________________________________________________

Tips for gathering evidence to demonstrate your skills

The important thing to remember when gathering evidence is that the more evidence the better - that is, the more evidence you gather to demonstrate your skills, the more confident an assessor can be that you have learned the skills not just at one point in time, but are continuing to apply and develop those skills (as opposed to just learning for the test!). Furthermore, one piece of evidence that you collect will not usualy demonstrate all the required criteria for a unit of competency, whereas multiple overlapping pieces of evidence will usually do the trick!

From the Wiki University

 

MARL6008A - Apply advanced principles of naval architecture

What evidence can you provide to prove your understanding of each of the following citeria?

Apply Simpson’s First and Second Rules to calculate areas, volumes and displacement of ship shapes using TPC values

  1. Simpson’s (Mid-Ordinate) First Rule and Second Rule, with typical applications, using half and full ordinates is explained
  2. Areas of water planes, bulkheads and elemental areas are calculated
  3. Problems of immersed hull volume, appendage volumes and non-standard tank volumes are solved
  4. Archimedes Principles of buoyancy are explained
  5. TPC with application of Simpson’s Rules to find displacement is explained
  6. Change in draught with mass addition and removal using TPC to give parallel sinkage or rise is explained
  7. Problems of vessel displacement given water plane areas or TPC values are solved
  8. TPC curves and displacement curves for given values are constructed
Simpson’s (Mid-Ordinate) First Rule and Second Rule, with typical applications, using half and full ordinates is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Areas of water planes, bulkheads and elemental areas are calculated

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of immersed hull volume, appendage volumes and non-standard tank volumes are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Archimedes Principles of buoyancy are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

TPC with application of Simpson’s Rules to find displacement is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Change in draught with mass addition and removal using TPC to give parallel sinkage or rise is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of vessel displacement given water plane areas or TPC values are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

TPC curves and displacement curves for given values are constructed

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Apply ship form coefficients

  1. Ship form coefficients and their uses are defined
  2. Coefficients are calculated given underwater form particulars
  3. Problems of ship form coefficients following change in length and draught are solved
Ship form coefficients and their uses are defined

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Coefficients are calculated given underwater form particulars

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of ship form coefficients following change in length and draught are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculate changes in draft due to fluid density

  1. Load line freeboard measurement and markings required for change in fluid density are explained
  2. Formula for change in mean draft due to change in density is derived
  3. Change in draft between fluids of two densities are calculated
  4. Formula to derive fresh water allowance is applied
  5. Changes in mean draft due to changes in density and loading are calculated
Load line freeboard measurement and markings required for change in fluid density are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Formula for change in mean draft due to change in density is derived

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Change in draft between fluids of two densities are calculated

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Formula to derive fresh water allowance is applied

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Changes in mean draft due to changes in density and loading are calculated

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Solve stability problems

  1. Calculations are performed to solve problems associated with adding, removing and transferring masses on ships
  2. Centre of gravity of a suspended mass is explained
  3. Calculations are performed to solve problems associated with suspended masses
  4. How KG and LCG can be obtained from stability information is explained
  5. Creation of overturning moments by mass addition, removal or transfer transversely, including cargo shift or loss is explained
  6. Calculations are performed to solve problems of small angle transverse stability
  7. Purpose of inclining experiments, weighing tests and roll period tests to determine stability characteristics are explained
  8. Calculations are performed to solve problems associated with inclining experiments and roll period tests
Calculations are performed to solve problems associated with adding, removing and transferring masses on ships

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Centre of gravity of a suspended mass is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to solve problems associated with suspended masses

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

How KG and LCG can be obtained from stability information is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Creation of overturning moments by mass addition, removal or transfer transversely, including cargo shift or loss is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to solve problems of small angle transverse stability

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Purpose of inclining experiments, weighing tests and roll period tests to determine stability characteristics are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to solve problems associated with inclining experiments and roll period tests

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculate loss of transverse stability due to fluid free surface

  1. Principles of free surface loss of GM are explained
  2. KG solid is differentiated from KG fluid
  3. Second moment of area is applied to obtain free surface moment of inertia and is related to stability criteria for standard conditions
  4. Problems of liquid free surface for simple and complex geometry compartments including variation in filling rates are solved
  5. Wall-sided formula and factors that lead to negative GM creating an angle of loll are explained
  6. Problems involving correction of loll angle are solved
Principles of free surface loss of GM are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

KG solid is differentiated from KG fluid

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Second moment of area is applied to obtain free surface moment of inertia and is related to stability criteria for standard conditions

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of liquid free surface for simple and complex geometry compartments including variation in filling rates are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Wall-sided formula and factors that lead to negative GM creating an angle of loll are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems involving correction of loll angle are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculate large angle transverse static and dynamical stability

  1. How GZ and KN righting levers are obtained from cross curves of stability is explained
  2. KN values are converted to GZ
  3. Dynamical stability is explained
  4. IMO requirements for intact and damaged stability cases as well as different vessel types, using typical values from stability files are applied
  5. Problems of large angle transverse stability, including changes due to redistribution of mass on board are solved and results against IMO requirements are evaluated
  6. Graphical solutions to large angle transverse stability problems identifying key points are prepared
How GZ and KN righting levers are obtained from cross curves of stability is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

KN values are converted to GZ

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Dynamical stability is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

IMO requirements for intact and damaged stability cases as well as different vessel types, using typical values from stability files are applied

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of large angle transverse stability, including changes due to redistribution of mass on board are solved and results against IMO requirements are evaluated

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Graphical solutions to large angle transverse stability problems identifying key points are prepared

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Solve problems of hydrostatics

  1. Importance of area and volume centroids is explained
  2. Methods of determining KB, LCB, LCF and bulkhead area centroids are explained
  3. Calculations are performed to determine centroids of shipboard areas and volumes
  4. Impact of hydrostatic pressure and load on vertical and horizontal surfaces is explained
  5. Methods of calculating pressure, load, shear force and bending moment diagrams for typical tank structures are applied
  6. Problems are solved in hydrostatics relating to pressure and loads on ship structures, including graphical solution of shear force diagrams of rectangular bulkheads and their elemental stiffeners
  7. Effective weld area of bulkhead attachment is calculated
Importance of area and volume centroids is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Methods of determining KB, LCB, LCF and bulkhead area centroids are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to determine centroids of shipboard areas and volumes

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Impact of hydrostatic pressure and load on vertical and horizontal surfaces is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Methods of calculating pressure, load, shear force and bending moment diagrams for typical tank structures are applied

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems are solved in hydrostatics relating to pressure and loads on ship structures, including graphical solution of shear force diagrams of rectangular bulkheads and their elemental stiffeners

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Effective weld area of bulkhead attachment is calculated

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Perform trim and draft calculations

  1. Meaning of trim and how trim occurs is explained
  2. Standard trimming moments resulting from mass addition, removal, transfer, flooding or combinations of these factors are explained
  3. Change of trim is calculated using MCT1cm, GML and BML
  4. Problems of applied trimming moments to determine final vessel draughts are solved
  5. True mean draft is differentiated from apparent mean draft by applying correction for layer
  6. Calculations are performed to solve problems associated with true mean draft
  7. Problems of combined trim and transverse stability from typical fluid transfer in both a longitudinal and transverse direction are solved
Meaning of trim and how trim occurs is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Standard trimming moments resulting from mass addition, removal, transfer, flooding or combinations of these factors are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Change of trim is calculated using MCT1cm, GML and BML

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of applied trimming moments to determine final vessel draughts are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

True mean draft is differentiated from apparent mean draft by applying correction for layer

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to solve problems associated with true mean draft

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Problems of combined trim and transverse stability from typical fluid transfer in both a longitudinal and transverse direction are solved

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculate voyage and daily fuel consumption

  1. Problems of fuel consumption are solved using the admiralty coefficient for various speed indexes
  2. Optimum vessel speed for combined propulsive and auxiliary fuel consumptions is determined
  3. Calculations are performed to show relationships between fuel consumption and displacement
  4. Calculations are performed to show relationships between daily fuel consumption and speed
  5. Calculations are performed to show relationships between voyage consumption, speed and distance travelled
Problems of fuel consumption are solved using the admiralty coefficient for various speed indexes

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Optimum vessel speed for combined propulsive and auxiliary fuel consumptions is determined

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to show relationships between fuel consumption and displacement

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to show relationships between daily fuel consumption and speed

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to show relationships between voyage consumption, speed and distance travelled

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Apply principles of loading to ship structures to determine strength characteristics

  1. Distribution of concentrated and point masses, buoyancy, load, shear force and bending moments are explained using simple loaded beam principles
  2. Calculations and diagrams are used to solve problems involving loaded conditions of simple box-shaped vessels, identifying location and value of maximum shear force and bending moments
  3. Empirical formula is applied to solve problems involving bending and direct stress in beams
Distribution of concentrated and point masses, buoyancy, load, shear force and bending moments are explained using simple loaded beam principles

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations and diagrams are used to solve problems involving loaded conditions of simple box-shaped vessels, identifying location and value of maximum shear force and bending moments

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Empirical formula is applied to solve problems involving bending and direct stress in beams

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Apply empirical formula to solve vibration problems

  1. Causes and adverse effects of ship vibration are explained
  2. Natural hull vibration is explained
  3. Schlick formula is applied to determine natural frequency of ship hull vibrations
  4. Ways of preventing or reducing local vibration are identified
Causes and adverse effects of ship vibration are explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Natural hull vibration is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Schlick formula is applied to determine natural frequency of ship hull vibrations

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Ways of preventing or reducing local vibration are identified

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Solve buoyancy problems

  1. Calculations are performed to solve problems of lost buoyancy and sinkage into homogeneous mud due to tide fall with insufficient under keel clearance
  2. Calculations are performed to solve problems of simple box-shaped and standard hull forms involving change in trim due to flooding end compartments
Calculations are performed to solve problems of lost buoyancy and sinkage into homogeneous mud due to tide fall with insufficient under keel clearance

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed to solve problems of simple box-shaped and standard hull forms involving change in trim due to flooding end compartments

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Perform rudder calculations

  1. Types of rudders in use on ships are outlined
  2. Reasons for using balanced rudders are identified
  3. Application of force acting normal to a rudder surface (Fn), its components and the influence of Propeller Race Effect is explained
  4. Rudder Centre of Effort for ahead and astern conditions is obtained to determine torque on rudder stock for conventional rudders or equivalent twisting moment (ETM) for spade rudders
  5. Calculations are performed involving simple and complex rudder shapes to calculate speed limitations ahead and astern for stated safety factor and material properties
  6. Calculations are performed involving simple and complex rudder shapes to determine rudder stock and coupling bolt diameters
Types of rudders in use on ships are outlined

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Reasons for using balanced rudders are identified

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Application of force acting normal to a rudder surface (Fn), its components and the influence of Propeller Race Effect is explained

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Rudder Centre of Effort for ahead and astern conditions is obtained to determine torque on rudder stock for conventional rudders or equivalent twisting moment (ETM) for spade rudders

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed involving simple and complex rudder shapes to calculate speed limitations ahead and astern for stated safety factor and material properties

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Calculations are performed involving simple and complex rudder shapes to determine rudder stock and coupling bolt diameters

Completed
Date:

Teacher:
Evidence:

 

 

 

 

 

 

 

Assessed

Teacher: ___________________________________ Date: _________

Signature: ________________________________________________

Comments:

 

 

 

 

 

 

 

 

Instructions to Assessors

Evidence Guide

The evidence guide provides advice on assessment and must be read in conjunction with the performance criteria, the required skills and knowledge, the range statement and the Assessment Guidelines for the Training Package.

Critical aspects for assessment and evidence required to demonstrate competency in this unit

The evidence required to demonstrate competence in this unit must be relevant to and satisfy all of the requirements of the Elements, Performance Criteria, Required Skills, Required Knowledge and include:

making accurate and reliable calculations

solving problems using appropriate laws and principles.

Context of and specific resources for assessment

Performance is demonstrated consistently over time and in a suitable range of contexts.

Resources for assessment include access to:

industry-approved marine operations site where advanced principles of naval architecture can be applied

vessel diagrams and specifications and other information required for mathematical calculations related to shipboard areas and volumes, vessel displacement, ship dimensions, centre of gravity, vessel speed, fuel consumption and hydrostatic pressure

technical reference library with current publications on naval architecture

tools, equipment and personal protective equipment currently used in industry

relevant regulatory and equipment documentation that impacts on work activities

range of relevant exercises, case studies and/or other simulated practical and knowledge assessments

appropriate range of relevant operational situations in the workplace.

In both real and simulated environments, access is required to:

relevant and appropriate materials and equipment

applicable documentation including workplace procedures, regulations, codes of practice and operation manuals.

Method of assessment

Practical assessment must occur in an:

appropriately simulated workplace environment and/or

appropriate range of situations in the workplace.

A range of assessment methods should be used to assess practical skills and knowledge. The following examples are appropriate to this unit:

direct observation of the candidate applying advanced principles of naval architecture

direct observation of the candidate applying relevant WHS/OHS requirements and work practices.

Guidance information for assessment

Holistic assessment with other units relevant to the industry sector, workplace and job role is recommended.

In all cases where practical assessment is used it should be combined with targeted questioning to assess Required Knowledge.

Assessment processes and techniques must be appropriate to the language and literacy requirements of the work being performed and the capacity of the candidate.

Required Skills and Knowledge

Required Skills:

Assess own work outcomes and maintain knowledge of current codes, standards, regulations and industry practices

Explain advanced principles of naval architecture

Identify and apply relevant mathematical formulas and techniques to solve complex problems related to speed, fuel consumption and stability of commercial vessels

Identify and interpret numerical and graphical information, and perform mathematical calculations related to shipboard areas and volumes, vessel displacement, ship dimensions, centre of gravity, vessel speed, fuel consumption and hydrostatic pressure

Identify, collate and process information required to perform calculations related to speed, fuel consumption and stability of commercial vessels

Impart knowledge and ideas through verbal, written and visual means

Read and interpret written information needed to perform calculations related to seaworthiness of commercial vessels

Use calculators to perform complex mathematical calculations

Required Knowledge:

Buoyancy

Centre of gravity – KG, VCG and LCG

Centre of gravity calculations

Density correction formula

Dynamical stability

Fuel consumption calculations

Hydrostatic pressure

Principle of displacement

Principle structural members of a ship and the proper names of the various parts

Rudders

Ship:

displacement

measurements

resistance

stability

stability calculations

Shipboard:

areas

volumes

Ship form coefficients

Simpson’s Rules

Stability problems

Tonnes per centimetre immersion (TPC)

Trim and stress tables, diagrams and stress calculating equipment

Vessel speed calculations

Vibration

Work health and safety (WHS)/occupational health and safety (OHS) requirements and work practices

Range Statement

The range statement relates to the unit of competency as a whole. It allows for different work environments and situations that may affect performance. Bold italicised wording, if used in the performance criteria, is detailed below.

Ship form coefficients may include:

Block coefficient

Midship section area coefficient

Prismatic coefficient

Waterplane area coefficient

Key points may include:

Maximum GZ value and angle of occurrence

Points of vanishing stability

Range of positive stability

Causes may include:

Action of the sea

Fluctuating forces on propeller

Operation of deck machinery

Out-of-balance forces in main or auxiliary machinery

Propeller-hull interaction

Adverse effects may include:

Discomfort to passengers and crew

Failure of equipment

Structural failure