### Formats and tools

- Unit Description
- Reconstruct the unit from the xml and display it as an HTML page.
- Assessment Tool
- an assessor resource that builds a framework for writing an assessment tool
- Assessment Template
- generate a spreadsheet for marking this unit in a classroom environment. Put student names in the top row and check them off as they demonstrate competenece for each of the unit's elements and performance criteria.
- Assessment Matrix
- a slightly different format than the assessment template. A spreadsheet with unit names, elements and performance criteria in separate columns. Put assessment names in column headings to track which performance criteria each one covers. Good for ensuring that you've covered every one of the performance criteria with your assessment instrument (all assessement tools together).
- Wiki Markup
- mark up the unit in a wiki markup codes, ready to copy and paste into a wiki page. The output will work in most wikis but is designed to work particularly well as a Wikiversity learning project.
- Evidence Guide
- create an evidence guide for workplace assessment and RPL applicants
- Competency Mapping Template
- Unit of Competency Mapping – Information for Teachers/Assessors – Information for Learners. A template for developing assessments for a unit, which will help you to create valid, fair and reliable assessments for the unit, ready to give to trainers and students
- Observation Checklist
- create an observation checklist for workplace assessment and RPL applicants. This is similar to the evidence guide above, but a little shorter and friendlier on your printer. You will also need to create a seperate Assessor Marking Guide for guidelines on gathering evidence and a list of key points for each activity observed using the unit's range statement, required skills and evidence required (see the unit's html page for details)

- Self Assessment Survey
- A form for students to assess thier current skill levels against each of the unit's performance criteria. Cut and paste into a web document or print and distribute in hard copy.
- Moodle Outcomes
- Create a csv file of the unit's performance criteria to import into a moodle course as outcomes, ready to associate with each of your assignments. Here's a quick 'how to' for importing these into moodle 2.x
- Registered Training Organisations
- Trying to find someone to train or assess you? This link lists all the RTOs that are currently registered to deliver MARL021, 'Apply advanced principles of naval architecture'.
- Google Links
- links to google searches, with filtering in place to maximise the usefulness of the returned results
- Books
- Reference books for 'Apply advanced principles of naval architecture' on fishpond.com.au. This online store has a huge range of books, pretty reasonable prices, free delivery in Australia *and* they give a small commission to ntisthis.com for every purchase, so go nuts :)

### Elements and Performance Criteria

Elements describe the essential outcomes. | Performance criteria describe the performance needed to demonstrate achievement of the element. | ||

1 | Apply Simpsonâ€™s First and Second Rules to calculate areas, volumes and displacement of ship shapes using TPC values | 1.1 | Simpsonâ€™s (Mid-Ordinate) First Rule and Second Rule, with typical applications, using half and full ordinates is explained |

1.2 | Areas of water planes, bulkheads and elemental areas are calculated | ||

1.3 | Problems of immersed hull volume, appendage volumes and non-standard tank volumes are solved | ||

1.4 | Archimedes Principles of buoyancy are explained | ||

1.5 | TPC with application of Simpsonâ€™s Rules to find displacement is explained | ||

1.6 | Change in draught with mass addition and removal using TPC to give parallel sinkage or rise is explained | ||

1.7 | Problems of vessel displacement given water plane areas or TPC values are solved | ||

1.8 | TPC curves and displacement curves for given values are constructed | ||

2 | Apply ship form coefficients | 2.1 | Ship form coefficients and their uses are defined |

2.2 | Coefficients are calculated given underwater form particulars | ||

2.3 | Problems of ship form coefficients following change in length and draught are solved | ||

3 | Calculate changes in draft due to fluid density | 3.1 | Load line freeboard measurement and markings required for change in fluid density are explained |

3.2 | Formula for change in mean draft due to change in density is derived | ||

3.3 | Change in draft between fluids of two densities are calculated | ||

3.4 | Formula to derive fresh water allowance is applied | ||

3.5 | Changes in mean draft due to changes in density and loading are calculated | ||

4 | Solve stability problems | 4.1 | Calculations are performed to solve problems associated with adding, removing and transferring masses on ships |

4.2 | Centre of gravity of a suspended mass is explained | ||

4.3 | Calculations are performed to solve problems associated with suspended masses | ||

4.4 | How KG and LCG can be obtained from stability information is explained | ||

4.5 | Creation of overturning moments by mass addition, removal or transfer transversely, including cargo shift or loss is explained | ||

4.6 | Calculations are performed to solve problems of small angle transverse stability | ||

4.7 | Purpose of inclining experiments, weighing tests and roll period tests to determine stability characteristics are explained | ||

4.8 | Calculations are performed to solve problems associated with inclining experiments and roll period tests | ||

5 | Calculate loss of transverse stability due to fluid free surface | 5.1 | Principles of free surface loss of GM are explained |

5.2 | KG solid is differentiated from KG fluid | ||

5.3 | Second moment of area is applied to obtain free surface moment of inertia and is related to stability criteria for standard conditions | ||

5.4 | Problems of liquid free surface for simple and complex geometry compartments including variation in filling rates are solved | ||

5.5 | Wall-sided formula and factors that lead to negative GM creating an angle of loll are explained | ||

5.6 | Problems involving correction of loll angle are solved | ||

6 | Calculate large angle transverse static and dynamical stability | 6.1 | How GZ and KN righting levers are obtained from cross curves of stability is explained |

6.2 | KN values are converted to GZ | ||

6.3 | Dynamical stability is explained | ||

6.4 | IMO requirements for intact and damaged stability cases as well as different vessel types, using typical values from stability files are applied | ||

6.5 | Problems of large angle transverse stability, including changes due to redistribution of mass on board are solved and results against IMO requirements are evaluated | ||

6.6 | Graphical solutions to large angle transverse stability problems identifying key points are prepared | ||

7 | Solve problems of hydrostatics | 7.1 | Importance of area and volume centroids is explained |

7.2 | Methods of determining KB, LCB, LCF and bulkhead area centroids are explained | ||

7.3 | Calculations are performed to determine centroids of shipboard areas and volumes | ||

7.4 | Impact of hydrostatic pressure and load on vertical and horizontal surfaces is explained | ||

7.5 | Methods of calculating pressure, load, shear force and bending moment diagrams for typical tank structures are applied | ||

7.6 | Problems are solved in hydrostatics relating to pressure and loads on ship structures, including graphical solution of shear force diagrams of rectangular bulkheads and their elemental stiffeners | ||

7.7 | Effective weld area of bulkhead attachment is calculated | ||

8 | Perform trim and draft calculations | 8.1 | Meaning of trim and how trim occurs is explained |

8.2 | Standard trimming moments resulting from mass addition, removal, transfer, flooding or combinations of these factors are explained | ||

8.3 | Change of trim is calculated using MCT1cm, GML and BML | ||

8.4 | Problems of applied trimming moments to determine final vessel draughts are solved | ||

8.5 | True mean draft is differentiated from apparent mean draft by applying correction for layer | ||

8.6 | Calculations are performed to solve problems associated with true mean draft | ||

8.7 | Problems of combined trim and transverse stability from typical fluid transfer in both a longitudinal and transverse direction are solved | ||

9 | Calculate voyage and daily fuel consumption | 9.1 | Problems of fuel consumption are solved using the admiralty coefficient for various speed indexes |

9.2 | Optimum vessel speed for combined propulsive and auxiliary fuel consumptions is determined | ||

9.3 | Calculations are performed to show relationships between fuel consumption and displacement | ||

9.4 | Calculations are performed to show relationships between daily fuel consumption and speed | ||

9.5 | Calculations are performed to show relationships between voyage consumption, speed and distance travelled | ||

10 | Apply principles of loading to ship structures to determine strength characteristics | 10.1 | Distribution of concentrated and point masses, buoyancy, load, shear force and bending moments are explained using simple loaded beam principles |

10.2 | Calculations and diagrams are used to solve problems involving loaded conditions of simple box-shaped vessels, identifying location and value of maximum shear force and bending moments | ||

10.3 | Empirical formula is applied to solve problems involving bending and direct stress in beams | ||

11 | Apply empirical formula to solve vibration problems | 11.1 | Causes and adverse effects of ship vibration are explained |

11.2 | Natural hull vibration is explained | ||

11.3 | Schlick formula is applied to determine natural frequency of ship hull vibrations | ||

11.4 | Ways of preventing or reducing local vibration are identified | ||

12 | Solve buoyancy problems | 12.1 | Calculations are performed to solve problems of lost buoyancy and sinkage into homogeneous mud due to tide fall with insufficient under keel clearance |

12.2 | Calculations are performed to solve problems of simple box-shaped and standard hull forms involving change in trim due to flooding end compartments | ||

13 | Perform rudder calculations | 13.1 | Types of rudders in use on ships are outlined |

13.2 | Reasons for using balanced rudders are identified | ||

13.3 | Application of force acting normal to a rudder surface (Fn), its components and the influence of Propeller Race Effect is explained | ||

13.4 | Rudder Centre of Effort for ahead and astern conditions is obtained to determine torque on rudder stock for conventional rudders or equivalent twisting moment (ETM) for spade rudders | ||

13.5 | Calculations are performed involving simple and complex rudder shapes to calculate speed limitations ahead and astern for stated safety factor and material properties | ||

13.6 | Calculations are performed involving simple and complex rudder shapes to determine rudder stock and coupling bolt diameters | ||

14 | Perform rudder calculations | 14.1 | Frictional resistance to motion of a vessel given the empirical formulae for frictional coefficient â€˜fâ€™ of the form is determined |

14.2 | Froudes Laws of Comparison is explained | ||

14.3 | Meaning of the term â€˜corresponding speedâ€™ is explained | ||

14.4 | Law of comparison is applied to determine residuary resistance of a ship if residuary resistance of a scale model of vessel is known or can be determined | ||

14.5 | Differentiation is made between effective power (naked),â€¨effective power and ship correlation factor | ||

14.6 | Effective power requirements of a full sized ship given total resistance to motion measured on a scale model of vessel towed at corresponding speed is calculated | ||

14.7 | Problems of resistance and powering for full size vessels and models are solved |