Demonstrate intermediate knowledge of marine diesel engines and systems

Formats and tools

Unit Description
Reconstruct the unit from the xml and display it as an HTML page.
Assessment Tool
an assessor resource that builds a framework for writing an assessment tool
Assessment Template
generate a spreadsheet for marking this unit in a classroom environment. Put student names in the top row and check them off as they demonstrate competenece for each of the unit's elements and performance criteria.
Assessment Matrix
a slightly different format than the assessment template. A spreadsheet with unit names, elements and performance criteria in separate columns. Put assessment names in column headings to track which performance criteria each one covers. Good for ensuring that you've covered every one of the performance criteria with your assessment instrument (all assessement tools together).
Wiki Markup
mark up the unit in a wiki markup codes, ready to copy and paste into a wiki page. The output will work in most wikis but is designed to work particularly well as a Wikiversity learning project.
Evidence Guide
create an evidence guide for workplace assessment and RPL applicants
Competency Mapping Template
Unit of Competency Mapping – Information for Teachers/Assessors – Information for Learners. A template for developing assessments for a unit, which will help you to create valid, fair and reliable assessments for the unit, ready to give to trainers and students
Observation Checklist
create an observation checklist for workplace assessment and RPL applicants. This is similar to the evidence guide above, but a little shorter and friendlier on your printer. You will also need to create a seperate Assessor Marking Guide for guidelines on gathering evidence and a list of key points for each activity observed using the unit's range statement, required skills and evidence required (see the unit's html page for details)

Self Assessment Survey
A form for students to assess thier current skill levels against each of the unit's performance criteria. Cut and paste into a web document or print and distribute in hard copy.
Moodle Outcomes
Create a csv file of the unit's performance criteria to import into a moodle course as outcomes, ready to associate with each of your assignments. Here's a quick 'how to' for importing these into moodle 2.x
Registered Training Organisations
Trying to find someone to train or assess you? This link lists all the RTOs that are currently registered to deliver MARL027, 'Demonstrate intermediate knowledge of marine diesel engines and systems'.
Google Links
links to google searches, with filtering in place to maximise the usefulness of the returned results
Books
Reference books for 'Demonstrate intermediate knowledge of marine diesel engines and systems' on fishpond.com.au. This online store has a huge range of books, pretty reasonable prices, free delivery in Australia *and* they give a small commission to ntisthis.com for every purchase, so go nuts :)


Elements and Performance Criteria

Elements describe the essential outcomes.

Performance criteria describe the performance needed to demonstrate achievement of the element.

1

Evaluate diesel fuel systems

1.1

Why atomisation and penetration of fuel and air turbulence are essential to optimum combustion is explained

1.2

Typical injection pressures and viscosities for different grades of fuel are documented and compared

1.3

Design modifications of pumps, camshafts and injectors for fuel types are outlined

1.4

Difference between constant and variable injection fuel pump timing, showing materials, principal parts, method of operation and adjustments of common pump types is compared and explained

1.5

Injection requirements for slow speed and high speed diesel engines are compared, including pilot injection and pre-combustion chambers

1.6

Common service faults, symptoms and causes of diesel fuel injection problems are identified, specifying appropriate adjustments, including methods of fuel pump timing

1.7

Work health and safety/occupational health and safety (WHS/OHS) requirements for handling and testing fuel injection systems are explained

1.8

Normal operating pressures and temperatures for fuel valve cooling arrangements, and uni-fuel and dual-fuel systems, including both high/medium viscosity fuel types are explained

2

Evaluate different methods of diesel engine cooling

2.1

Importance of maintaining diesel engine thermal efficiency and evaluate thermal loads on engine components is outlined

2.2

Cooling media selection is justified, and advantages and disadvantages of different diesel cooling methods are outlined

2.3

Appropriate action to be taken with common faults in cooling systems is explained and different cooling water treatments are compared

2.4

How cooling systems are commissioned, stored during idle periods and restored after contamination is confirmed

2.5

Methods of load-dependent cooling of diesel alternators on heavy fuels are evaluated

2.6

Normal operation temperatures, pressures, and methods of cooling medium and slow speed diesel engine pistons, exhaust valves, cylinders, turbochargers and cylinder heads are identified

3

Evaluate diesel engine lubrication requirements

3.1

Principles of engine lubrication are outlined

3.2

Lubricant types, physical and chemical properties and applications are assessed

3.3

Sources of diesel lubricant contamination and deterioration are identified

3.4

Ways of testing for diesel lubricant contamination and deterioration, interpreting test results and identifying appropriate action to be taken are outlined

3.5

Distribution of lubricating oil to guides, top-end, bottom-end and main bearings of diesel engines, showing direction of flow, typical clearances and stating normal operating temperatures and pressure is explained

3.6

Principles of bearing lubrication are outlined

3.7

Materials used in bearing construction are identified

3.8

Bearing faults are evaluated and remedies to prevent them from occurring are determined

4

Compare different propulsion, manoeuvring and starting methods

4.1

Starting procedures of diesel engines for power generation, propulsion, and emergency use are clarified

4.2

Starting and manoeuvring requirements/sequences for direct-coupled reversible and geared propulsion diesels, including CPP applications are explained

4.3

Common faults are analysed and appropriate action to be taken with typical diesel starting and manoeuvring systems is identified

4.4

Manoeuvring and reversing systems of propulsion diesel engines are outlined

4.5

Different methods of achieving reversing capability with direct-coupled propulsion diesels are compared

4.6

Layout of a diesel-electric drive is compared and contrasted with the layout of a turbo electric drive

5

Analyse materials used in constructing diesel engines

5.1

Common materials used in diesel engine construction are assessed, selection is justified, and typical compositions and physical properties of components are specified

5.2

Dynamic stresses and loads are interpreted, service limitations are identified and different methods of component fabrication are evaluated

5.3

Two-stroke and four-stroke operating cycle forces, couples and moments, relating to design principles of crankshafts, bedplates, foundations and crossheads are outlined

5.4

Out-of-balance gas and inertia forces, couples and moments are related to flywheels, balance weights and first/second order balancing

5.5

Factors contributing to torsional vibration are explained and methods of minimising or eliminating harmful effects of critical speeds are clarified

5.6

Pistons, liners, piston rings, bearings and crankshafts are calibrated to identify wear patterns, limits and means of correction

5.7

Alignment and adjustment criteria of crankshafts, chain-drives, integral thrust bearings and crossheads are specified

5.8

Specified working clearances and limits of all bearings, sliding surfaces and interference fits of typical diesel engines are compiled using engine builder manuals

6

Explain uptake and scavenge fires and air line, gearbox and crankcase explosions

6.1

Design and operational factors that contribute to fires in waste heat units are explained and methods of extinguishing and/or containing soot and hydrogen fires are specified

6.2

Routine cleaning procedures, inspection criteria, symptoms of fire and risks of isolation in service associated with waste heat units are identified

6.3

Operational factors that contribute to scavenge fires are identified, symptoms are outlined, methods of extinguishing are evaluated and routine inspection criteria of scavenge spaces are stated

6.4

Principles of explosive mixtures are clarified and how a starting airline explosion can occur is explained

6.5

How risk of scavenge fires may be minimised in service by protective devices and routine evaluation of starting air systems is clarified

6.6

Causes of gearbox and crankcase explosions in propulsion and auxiliary drives are outlined

6.7

How risks of gearbox and crankcase explosions may be minimised in service are explained and correct procedures to be taken in the event of warning of a hazardous atmosphere in both oil and dual-fuel engines are clarified

6.8

Operating principles of an oil-mist detector, crankcase breather and explosion relief doors are explained

6.9

Function of a piston rod scraper box is outlined, and causes of wear and appropriate adjustments are identified

7

Explain correct working practices associated with diesel engine operation, maintenance and repair

7.1

Safe working practices associated with isolating main and propulsion diesels under all emergency and routine situations are explained, including use of protective devices, interlocks and evaluation of their status

7.2

Safe working practices associated with working in crankcases and other enclosed spaces are explained

7.3

Safe working practices associated with safe handling of hydraulic tools and dangers of lifting/isolating heavy components both unaided and with lifting gear are explained

7.4

Hazards of working with flammable liquids under pressure, chemicals, acids and hydrocarbons as well as selection criteria for appropriate protective clothing are explained

7.5

Safe working strategies for diesel engine maintenance are planned using engine manufacturer instruction manuals and product data safety sheets

8

Analyse faults using combustion diagnostic equipment

8.1

Two-stroke and four-stroke theoretical cycle diagrams are compared with results recorded using diagnostic tools

8.2

Combustion faults from typical diagrams are evaluated and corrective adjustments are specified

8.3

Service combustion values are compared with trials or test bed figures

8.4

Common faults associated with pressure charging and fuel injection systems are outlined

8.5

Methods of pressure charging diesel engines are compared, and materials of construction, design features, operational maintenance and emergency procedures are correctly identified

8.6

Causes of efficiency loss and surge are explained

8.7

Scavenging systems and gas/air flow paths through a turbocharger, under normal and emergency operation modes are explained using relevant diagrams

9

Analyse construction and operation of marine gas turbines

9.1

Flow of air and gas through a simple cycle marine gas turbine is analysed

9.2

Materials and construction of compressor, combustion system and turbine in single and two shaft designs are outlined

9.3

Controls required for control and protection of marine gas turbines are detailed

9.4

Function of accessories necessary for safe operation of marine gas turbines are explained