Apply intermediate principles of naval architecture

Formats and tools

Unit Description
Reconstruct the unit from the xml and display it as an HTML page.
Assessment Tool
an assessor resource that builds a framework for writing an assessment tool
Assessment Template
generate a spreadsheet for marking this unit in a classroom environment. Put student names in the top row and check them off as they demonstrate competenece for each of the unit's elements and performance criteria.
Assessment Matrix
a slightly different format than the assessment template. A spreadsheet with unit names, elements and performance criteria in separate columns. Put assessment names in column headings to track which performance criteria each one covers. Good for ensuring that you've covered every one of the performance criteria with your assessment instrument (all assessement tools together).
Wiki Markup
mark up the unit in a wiki markup codes, ready to copy and paste into a wiki page. The output will work in most wikis but is designed to work particularly well as a Wikiversity learning project.
Evidence Guide
create an evidence guide for workplace assessment and RPL applicants
Competency Mapping Template
Unit of Competency Mapping – Information for Teachers/Assessors – Information for Learners. A template for developing assessments for a unit, which will help you to create valid, fair and reliable assessments for the unit, ready to give to trainers and students
Observation Checklist
create an observation checklist for workplace assessment and RPL applicants. This is similar to the evidence guide above, but a little shorter and friendlier on your printer. You will also need to create a seperate Assessor Marking Guide for guidelines on gathering evidence and a list of key points for each activity observed using the unit's range statement, required skills and evidence required (see the unit's html page for details)

Self Assessment Survey
A form for students to assess thier current skill levels against each of the unit's performance criteria. Cut and paste into a web document or print and distribute in hard copy.
Moodle Outcomes
Create a csv file of the unit's performance criteria to import into a moodle course as outcomes, ready to associate with each of your assignments. Here's a quick 'how to' for importing these into moodle 2.x
Registered Training Organisations
Trying to find someone to train or assess you? This link lists all the RTOs that are currently registered to deliver MARL6004A, 'Apply intermediate principles of naval architecture'.
Google Links
links to google searches, with filtering in place to maximise the usefulness of the returned results
Reference books for 'Apply intermediate principles of naval architecture' on This online store has a huge range of books, pretty reasonable prices, free delivery in Australia *and* they give a small commission to for every purchase, so go nuts :)

Elements and Performance Criteria


Calculate shipboard areas, volumes and displacement


Simpson’s Rules are applied to find typical and non-conforming shipboard areas


Simpson’s Rules are applied to calculate water plane areas or transverse sectional areas to determine underwater volumes


Simpson’s Rules are applied to immersed tonnes per centimetre values to determine displacement


Tonnes per centimetre is applied to determine change in mean draught due to addition or removal of mass


Calculate coefficients of form and changes in draught associated with fluid density


Application of coefficients of form are identified and explained


Problems are solved involving coefficients of form


Impact of hull modification on hull form coefficients is explained


Problems of coefficients of form are solved following change in length by mid body insertion/removal


Relationship between underwater volume/draught and fluid density is explained


Application of freeboard markings for Load Line Rules is explained


Density correction formula is defined


Change in mean draught due to change in density is calculated


Solve stability problems


Effects of adding, removing and transferring mass on board or from a vessel are explained


Calculations are performed to solve problems involving suspended masses


Positive, neutral and negative stability are distinguish from each other


How centre of gravity is calculated for redistribution, addition and/or removal of masses is explained, including the use of derricks


Problems are solved involving vertical and horizontal movement of masses to calculate KG and GM for typical vessel loaded conditions, together with true shift in vessel centre of gravity between specified conditions and small angle transverse stability


Vessel righting moment and GZ are explained


Calculations are performed to solve problems of small angle transverse stability


Purpose of an Inclining Experiment is explained


Formula for determining initial stability characteristics is applied


Calculations are performed to solve problems using Inclining Experiments


Calculate loss of transverse stability due to fluid free surface


Principles of liquid free surface are explained


Principles of metacentric height are explained


Centre of gravity solid is distinguished from centre of gravity fluid


Application of the second moment of area using parallel axis theorem to obtain free surface moment of inertia and use of density correction between vessel and free surface fluids is explained


Calculations are performed to solve problems of liquid free surface for simple compartments, including correction for free surface on metacentric height [GM] and fluid mass on centre of gravity [KG]


Calculate centroids and solve problems of hydrostatics


Importance of area and volume centroids and methods of determining KG, LCF, LCB and bulkhead area centroids is explained


Calculations are performed to solve problems related to area and volume centroids


Methods of calculating pressures and loads on typical tank structures for different filling rates, accidental flooding or tank testing are explained


Use of flat panel stiffeners and shear force reactions applicable to vertical bulkheads is explained


Calculations are performed to solve problems in hydrostatics relating to pressure and loads on ship structures, including bulkheads, stiffeners and shear forces


Solve problems involving propellers and powering


Factors that influence the speed of advance are explained


Calculations are performed to solve problems of single screw vessels


Relationships between propulsive coefficient, quasi propulsive coefficient and related powers together with typical values of losses for transmission, hull and propeller are explained


Components of hull resistance are explained


Calculations are performed to show impact of resistance augmentation and thrust deduction factors on powering of full size vessels


Causes, effects and methods of reducing cavitation are explained


Calculate voyage and daily fuel consumptions


Admiralty coefficient for fuel consumption is stated taking account of values for ship speed, shaft power and displacement


Vessel fuel consumption is calculated using admiralty coefficient


Calculations are performed to show relationship between fuel consumption and displacement


Calculations are performed to show relationship between daily fuel consumption and speed


Calculations are performed to show relationship between voyage consumption, speed and distance travelled


Voyage and daily fuel consumption are calculated taking into account propulsion, domestic loads and fuel reserve requirements


Solve problems related to symmetrical flooding


Volume lost-volume gained relationship for flooded compartments is explained


Modified volume lost by compartment subdivision is explained using a horizontal flat


Modified volume lost by compartment permeability is explained, including consideration of cargo stowage factor and relative density details


Problems of symmetrical flooding of simple box-shaped and standard hull forms involving flooding above and below horizontal subdivisions and different permeabilities are solved